632 research outputs found

    The W3W_3-string spectrum

    Full text link
    We study the spectrum of W3W_3 strings. In particular, we show that for appropriately chosen space-time signature, one of the scalar fields is singled out by the spin-3 constraint and is ``frozen'': no creation operators from it can appear in physical states and the corresponding momentum must assume a specific fixed value. The remaining theory is unitary and resembles an ordinary string theory in d≠26d\ne26 with anomalies cancelled by appropriate background charges. In the case of the W3W_3 string, however, the spin-two ``graviton'' is massive.Comment: 14 Page

    Gauged Six-dimensional Supergravity from Massive Type IIA

    Get PDF
    We obtain the complete non-linear Kaluza-Klein ansatz for the reduction of the bosonic sector of massive type IIA supergravity to the Romans F(4) gauged supergravity in six dimensions. The latter arises as a consistent warped S^4 reduction.Comment: Latex, 7 page

    Investigating the intrinsic noise limit of Dayem bridge NanoSQUIDs

    Get PDF
    NanoSQUIDs made from Nb thin films have been produced with nanometre loop sizes down to 200 nm, using weak-link junctions with dimensions less than 60 nm. These composite (W/Nb) single layer thin film devices, patterned by FIB milling, show extremely good low-noise performance ∌170 nΊ0 at temperatures between 5 and 8.5 K and can operate in rather high magnetic fields (at least up to 1 T). The devices produced so far have a limited operating temperature range, typically only 1–2 K. We have the goal of achieving operation at 4.2 K, to be compatible with the best SQUID series array (SSA) preamplifier available. Using the SSA to readout the nanoSQUIDs provides us with a means of investigating the intrinsic noise of the former. In this paper we report improved white noise levels of these nanoSQUIDs, enabling potential detection of a single electronic spin flip in a 1-Hz bandwidth. At low frequencies the noise performance is already limited by SSA preamplifier noise

    Intersecting branes and Supersymmetry

    Get PDF
    We consider intersecting M-brane solutions of supergravity in eleven dimensions. Supersymmetry turns out to be a powerful tool in obtaining such solutions and their generalizations.Comment: 6 pages, Latex, Presented at Supersymmetry and Quantum Field Theory, International Seminar dedicated to the memory of D. V. Volkov, Kharkov, 199

    Spectrum of D=6, N=4b Supergravity on AdS_3 x S^3

    Get PDF
    The complete spectrum of D=6, N=4b supergravity with n tensor multiplets compactified on AdS_3 x S^3 is determined. The D=6 theory obtained from the K_3 compactification of Type IIB string requires that n=21, but we let n be arbitrary. The superalgebra that underlies the symmetry of the resulting supergravity theory in AdS_3 coupled to matter is SU(1,1|2)_L x SU(1,1|2)_R. The theory also has an unbroken global SO(4)_R x SO(n) symmetry inherited from D=6. The spectrum of states arranges itself into a tower of spin-2 supermultiplets, a tower of spin-1, SO(n) singlet supermultiplets, a tower of spin-1 supermultiplets in the vector representation of SO(n) and a special spin-1/2 supermultiplet also in the vector representation of SO(n). The SU(2)_L x SU(2)_R Yang-Mills states reside in the second level of the spin-2 tower and the lowest level of the spin-1, SO(n) singlet tower and the associated field theory exhibits interesting properties.Comment: 37 pages, latex, 5 tables and 3 figures, typos corrected, a reference adde

    Hearing capacities and otolith size in two ophidiiform species (<i>Ophidion rochei</i> and <i>Carapus acus</i>)

    Get PDF
    Numerous studies have highlighted the diversity of fish inner ear morphology. However, the function of the shape, size and orientation of the different structures remains poorly understood. The saccule (otolithic endorgan) is considered to be the principal hearing organ in fishes and it has been hypothesized that sagitta (saccular otolith) shape and size affect hearing capacities: large sagittae are thought to increase sensitivity. The sagittae of many ophidiids and carapids occupy a large volume inside the neurocranium. Hence they are a good structure with which to test the size hypothesis. The main aim of this study was to investigate hearing capacities and inner ear morphology in two ophidiiform species: Ophidion rochei and Carapus acus. We used a multidisciplinary approach that combines dissections, ”CT-scan examinations and auditory evoked potential techniques. Carapus acus and O. rochei sagittae have similar maximal diameters; both species have larger otoliths than many non-ophidiiform species, especially compared with the intra-neurocranium volume. Both species are sensitive to sounds up to 2100 Hz. Relative to the skull, O. rochei has smaller sagittae than the carapid, but better hearing capacities from 300 to 900 Hz and similar sensitivities at 150 Hz and from 1200 to 2100 Hz. Results show that hearing capacities of a fish species cannot be predicted only based on sagitta size. Larger otoliths (in size relative to the skull) may have evolved mainly for performing vestibular functions in fishes, especially those species that need to execute precise and complex movements

    Anti-de Sitter space, branes, singletons, superconformal field theories and all that

    Get PDF
    There has recently been a revival of interest in anti de-Sitter space (AdS) brought about by the conjectured duality beteeen physics in the bulk of AdS and a conformal field theory on the boundary. Since the whole subject of branes, singletons and superconformal field theories on the AdS boundary was an active area of research about ten years ago, I begin with a historical review, including the ``Membrane at the end of the universe'' idea. Next I discuss two recent papers with Lu and Pope on on AdS5×S5AdS_{5} \times S^{5} and on AdS3×S3AdS_{3} \times S^{3}, respectively. In each case we note that odd-dimensional spheres S2n+1S^{{2n+1}} may be regarded as U(1) bundles over CPnCP^{n} and that this permits an unconventional ``Hopf''duality along the U(1) fibre. This leads in particular to the phenomenon of BPS without BPS whereby states which appear to be non-BPS in one picture are seen to be BPS in the dual picture.Comment: Minor improvements. 37 pages Latex. Based on talks delivered at the the PASCOS 98 conference, Northeastern University, March 1998; the Superfivebranes and Physics in 5+1 Dimensions conference, ICTP, Trieste, Italy, April 1998; the Arnowitt Fest, Texas A&M University, April 1998; the Strings 98 conference, ITP, Santa Barbara, June 199

    SU(2) Reduction of Six-dimensional (1,0) Supergravity

    Get PDF
    We obtain a gauged supergravity theory in three dimensions with eight real supersymmetries by means of a Scherk-Schwarz reduction of pure N=(1,0) supergravity in six dimension on the SU(2) group manifold. The SU(2) Yang-Mills fields in the model propagate, since they have an ordinary kinetic term in addition to Chern-Simons couplings. The other propagating degrees of freedom consist of a dilaton, five scalars which parameterise the coset SL(3,R)/SO(3), three vector fields in the adjoint of SU(2), and twelve spin 1/2 fermions. The model admits an AdS_3 vacuum solution. We also show how a charged black hole solution can be obtained, by performing a dimensional reduction of the rotating self-dual string of six-dimensional (1,0) supergravity.Comment: Latex, 24 page

    Gauged supergravity from dimensional reduction

    Get PDF
    We perform a generalised Scherk-Schwarz reduction of the effective action of the heterotic string on T6 to obtain a massive N = 4 supergravity theory in four dimensions. The local symmetry-group of the resulting d = 4 theory includes a Heisenberg group, which is a subgroup of the global 0(6,6 + n) obtained in the standard reduction. We show explicitly that the same theory can be obtained by gauging this Heisenberg group in d = 4, N = 4 supergravity.

    Kaehler forms and cosmological solutions in type II supergravities

    Full text link
    We consider cosmological solutions to type II supergravity theories where the spacetime is split into a FRW universe and a K\"ahler space, which may be taken to be Calabi-Yau. The various 2-forms present in the theories are taken to be proportional to the K\"ahler form associated to the K\"ahler space.Comment: 6 pages, LaTeX2
    • 

    corecore